Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

β-Pyridinium dichloroiodide

Ernesto Schulz Lang,* Robert A. Burrow and Juraci Diniz

Departamento de Química, Universidade Federal de Santa Maria, 97119-900 Santa
Maria, RS, Brazil
Correspondence e-mail: eslang@quimica.ufsm.br

Received 18 November 1999
Accepted 6 January 2000
The β modification of pyridinium dichloroiodide, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{Cl}_{2} \mathrm{I}^{-}$, was obtained as yellow crystals by the reaction of $\left(\mathrm{C}_{5} \mathrm{NH}_{5}\right) \mathrm{AuCl}_{3}, \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} . \mathrm{Cl}^{-}$and I_{2} in a vacuum-sealed ampoule. The dichloroiodide ion is nearly symmetric and linear with $\mathrm{I}-\mathrm{Cl}$ bond lengths of 2.544 (3) and 2.550 (3) \AA and a $\mathrm{Cl}-\mathrm{I}-\mathrm{Cl}$ angle of 179.68 (12) .

Comment

The dichloroiodide ion has been characterized in many compounds showing different forms (Bandoli et al., 1978; Grebe et al., 1995). Tucker reported the α modification of pyridinium dichloroiodide as trigonal, space group $R \overline{3} m$, with $a=6.165$ (4) $\AA, \alpha=82.45$ (6) ${ }^{\circ}$ and $Z=1$ (Tucker \& Kroon, 1973). We present (I), the β modification of this compound, which crystallizes in the orthorhombic space group Pnma with $a=8.0390$ (5), $b=7.694$ (16), $c=14.130$ (2) \AA and $Z=4$.

The title compound is formed during the reaction of $\left(\mathrm{C}_{5} \mathrm{NH}_{5}\right) \mathrm{AuCl}_{3}, \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$and I_{2} in a sealed glass ampoule. We also observed the formation of elemental gold. Crystals of good quality were obtained by subsequent sublimation. The asymmetric unit contains a half dichloroiodide anion located on a mirror plane and a half pyridinium cation off a mirror plane.

(I)

The packing diagram (Fig. 1) shows the pyridinium cation packed in stacks along the a axis. The dichloroiodide anion packs with the $\mathrm{Cl}-\mathrm{I}-\mathrm{Cl}$ units parallel in a zigzag pattern along the b axis between the pyridinium stacks with a spacing of 4.3931 (10) \AA between the anions. The cation-anion ($\mathrm{H}-$ Cl) distance of $2.86-2.94 \AA$ (Table 2) is rather shorter than the sum of the van der Waals radii (Pauling, 1960), suggesting that the cation-anion interactions control the packing.

In the β-modification, the deviation of the $\mathrm{Cl}-\mathrm{I}-\mathrm{Cl}$ bond angle $\left[179.68(12)^{\circ}\right]$ from linearity is not significant. The bond lengths of $\mathrm{I}-\mathrm{Cl} 1=2.544$ (3) and $\mathrm{I}-$ $\mathrm{Cl} 2=2.550(3) \AA$ can be considered symmetric and have values similar to that already found in similar anions (2.54-2.69 \AA) (Bandoli et al., 1978; Grebe et al., 1995). In agreement with another similar structure we are assuming that the cation is sixfold disordered; we have been unable to distinguish an ordered $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+}$ion (Tucker \& Kroon, 1973). The pyridinium ion is treated as six symmetryrelated CH groups (occupancy $=5 / 6$) and six related NH groups (occupancy $=1 / 6$). Selected bond distances and angles are given in Table 1.

Figure 1
View of the title structure with the Cl and I atoms labelled. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

β-Pyridinium dichloroiodide was formed when $\left(\mathrm{C}_{5} \mathrm{NH}_{5}\right) \mathrm{AuCl}_{3}$, $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$and I_{2} in the molar ratio 1:1:4 were heated in a sealed glass ampoule (diameter $=1.2 \mathrm{~cm}$, length $=20 \mathrm{~cm}$). To obtain high quality crystals, it is essential that the temperature is increased slowly between 373 and 523 K . After cooling, β-pyridinium dichloroiodide deposits as yellow single crystals. Elemental analysis (calculated/found): C 21.60/23.07, H 2.16/2.34, N 5.03/5.07\%.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+} \cdot \mathrm{Cl}_{2} \mathrm{I}^{-}$
$M_{r}=277.91$
Orthorhombic, Pnma
$a=8.0390$ (5) \AA
$b=7.6940(16)$, \AA
$c=14.130$ (2) A
$V=874.0(2) \AA^{3}$
$Z=4$
$D_{x}=2.112 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=5.3-16.3^{\circ}$
$\mu=4.195 \mathrm{~mm}^{-1}$
$T=208$ (2) K
Needle, yellow
$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$

Data collection

CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.660, T_{\text {max }}=0.811$
1378 measured reflections
1129 independent reflections
$R_{\text {int }}=0.075$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.141$
$S=1.046$
1129 reflections
46 parameters

$$
\begin{aligned}
& \theta_{\max }=27.96^{\circ} \\
& h=-1 \rightarrow 10 \\
& k=0 \rightarrow 10 \\
& l=-18 \rightarrow 1 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \quad \text { intensity decay: } 5.3 \%
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

$\mathrm{I} 1-\mathrm{Cl} 1$	$2.544(3)$	$\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$1.384(17)$
$\mathrm{I} 1-\mathrm{Cl} 2$	$2.550(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.363(11)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.361(11)$	$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.312(18)$
$\mathrm{Cl} 1-\mathrm{I} 1-\mathrm{Cl} 2$	$179.68(12)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.0(8)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$119.2(5)$	$\mathrm{C} 3^{\mathrm{i}}-\mathrm{C} 3-\mathrm{C} 2$	$120.9(5)$

Symmetry code: (i) $x, \frac{1}{2}-y, z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.93	2.91	$3.566(9)$	129
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 2$	0.93	2.90	$3.512(8)$	125
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.93	2.94	$3.570(9)$	127
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 2^{\mathrm{iii}}$	0.93	2.86	$3.527(9)$	130

Symmetry codes: (i) $-x,-y,-z$; (ii) $x-\frac{1}{2}, y,-\frac{1}{2}-z$; (iii) $-\frac{1}{2}-x,-y, z-\frac{1}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Financial assistance was provided by FAPERGS and CNPq (Brazil), and we thank Professor Joachim Strähle, University of Tübingen, Germany, for his kind hospitality and for providing facilities.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1276). Services for accessing these data are described at the back of the journal.

References

Bandoli, G., Clemente, D. A. \& Nicolini, M. (1978). J. Cryst. Mol. Struct. 8, 279-293.
Enraf-Nonius (1994). CAD-4 Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Grebe, J., Harms, K., Weller, F. \& Dehnicke, K. (1995). Z. Anorg. Allg. Chem. 621, 1489-1495.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pauling, L. (1960). The Nature of the Chemical Bond, p. 260. London: Oxford University Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1995). HELENA. University of Utrecht, The Netherlands.
Tucker, P. A. \& Kroon, P. A. (1973). Acta Cryst. B29, 2967-2968.

